MAICA
Contents:
NOTES
PACKAGE REFERENCE
MAICA
»
Index
Index
A
|
C
|
D
|
E
|
F
|
G
|
I
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
A
Autoencoder (class in ml.nn)
C
CGCNN (class in ml.gnn)
chem.base
module
chem.crystal
module
chem.formula
module
chem.molecule
module
core.env
module
core.sys
module
D
data.base
module
data.crystal
module
data.formula
module
data.graph
module
data.molecule
module
data.vector
module
Dataset (class in data.base)
dec() (Autoencoder method)
denormalize() (VectorDataset method)
E
enc() (Autoencoder method)
even_samples() (in module chem.crystal)
F
FCNN (class in ml.nn)
fit() (Autoencoder method)
(FCNN method)
(GNN method)
(SKLearnModel method)
form_to_vec() (in module chem.formula)
FormDataset (class in data.formula)
forward() (Autoencoder method)
(CGCNN method)
(FCNN method)
(GAT method)
(GCN method)
(GIN method)
G
GAT (class in ml.gnn)
GCN (class in ml.gnn)
get_atom_info() (in module chem.crystal)
get_batch_sizes() (in module ml.util)
get_bond_info() (in module chem.crystal)
get_crystal_graph() (in module chem.crystal)
get_data_loader() (in module ml.util)
get_error_dist() (in module util.analysis)
get_init_lrs() (in module ml.util)
get_loss_func() (in module ml.util)
get_model() (in module ml.util)
get_mol_graph() (in module chem.molecule)
get_one_hot_feat() (in module util.preprocessing)
get_optimizer() (in module ml.util)
get_split_idx() (in module util.preprocessing)
get_target_dist() (in module util.analysis)
GIN (class in ml.gnn)
GNN (class in ml.gnn)
gpu() (PyTorchModel method)
GraphDataset (class in data.graph)
I
impute() (in module util.preprocessing)
L
load() (PyTorchModel method)
(SKLearnModel method)
load_dataset() (in module data.crystal)
(in module data.formula)
(in module data.molecule)
(in module data.vector)
load_elem_feats() (in module chem.base)
load_mendeleev_feats() (in module chem.base)
M
ml.base
module
ml.gnn
module
ml.nn
module
ml.transfer_learning
module
ml.util
module
Model (class in ml.base)
module
chem.base
chem.crystal
chem.formula
chem.molecule
core.env
core.sys
data.base
data.crystal
data.formula
data.graph
data.molecule
data.vector
ml.base
ml.gnn
ml.nn
ml.transfer_learning
ml.util
util.analysis
util.optimization
util.preprocessing
util.visualization
N
n_data() (GraphDataset method)
n_edge_feats() (GraphDataset method)
n_graphs() (GraphDataset method)
n_node_feats() (GraphDataset method)
normalize() (VectorDataset method)
O
optimize() (in module util.optimization)
P
parse_form() (in module chem.formula)
plot_embeddings() (in module util.visualization)
plot_error_dist() (in module util.visualization)
plot_pred_result() (in module util.visualization)
plot_target_dist() (in module util.visualization)
predict() (Autoencoder method)
(FCNN method)
(GNN method)
(SKLearnModel method)
PyTorchModel (class in ml.base)
R
rbf() (in module chem.crystal)
read_data_file() (in module data.base)
remove_outliers() (VectorDataset method)
run_ml_model() (in module util.optimization)
S
save() (PyTorchModel method)
(SKLearnModel method)
save_eval_results() (in module ml.util)
save_interpretation() (in module ml.util)
set_gpu_runnable() (in module core.sys)
SKLearnModel (class in ml.base)
split() (FormDataset method)
(GraphDataset method)
(VectorDataset method)
T
tl_fine_tuning() (in module ml.transfer_learning)
tl_retrain_head() (in module ml.transfer_learning)
to_tensor() (VectorDataset method)
training (Autoencoder attribute)
(CGCNN attribute)
(FCNN attribute)
(GAT attribute)
(GCN attribute)
(GIN attribute)
(GNN attribute)
(PyTorchModel attribute)
U
util.analysis
module
util.optimization
module
util.preprocessing
module
util.visualization
module
V
VectorDataset (class in data.vector)