maica.util ========== The ``maica.util`` module includes useful functions for preprocessing and visualization. This can be used to convert a user dataset into a new dataset suitable for machine learning. Also, it can be applied to analyze prediction results of machine learning. In addition to the supplementary functions, this module provides meta-heuristic algorithms for optimizing the input data of the mathematical functions and machine learning models. **Functions** .. list-table:: :widths: 30 70 :header-rows: 1 * - Function Name - Description * - impute - Fill empty values in the given dataset. * - get_split_idx - Randomly generate two subsets of the original indices. This function is useful to split a dataset into training and test datsaets. * - get_one_hot_feat - Generate one-hot encoding of the categorical features. * - get_target_dist - Get a histogram of the target values. Lists of the bins and the labels of the histogram are returned for the given target values. * - get_error_dist - Compute mean of the prediction errors for each range of target values. * - plot_target_dist - Plot a histogram of the target values for a given dataset. * - plot_error_dist - Plot a distribution of prediction errors for each range of target values. * - plot_pred_result - Draw a scatter plot of target and predicted values. * - plot_embeddings - Draw a 2-dimensional scatter plot of data embeddings. * - optimize - Find the optimal input of a given objective function. * - run_ml_model - A wrapper function to run machine learning algorithms for meta-heuristic based input optimization. .. automodule:: util.preprocessing :members: :undoc-members: .. automodule:: util.analysis :members: :undoc-members: .. automodule:: util.visualization :members: :undoc-members: .. automodule:: util.optimization :members: :undoc-members: